
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10796-022-10330-0

Visualizing Convolutional Neural Network Models’ Sensitivity
to Nonnatural Data Order

Randy Klepetko1 · Ram Krishnan1

Accepted: 12 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Convolutional neural networks (CNN) have revolutionized image recognition technology and found applications in various
nonimage-related fields. For nonnatural data, such as cybersecurity packets, in which the data sample order is not defined
by nature, some models trained on certain orderings of data perform better than when trained with other orderings. Some
orderings create patterns from which the CNN extracts better features. Understanding how to best order the training data to
improve CNN performance is not well-studied. In this study, we investigate this problem by examining malware infections
using different CNN models and include visualization tools to enhance our analysis. We define a functional algorithm for
ordering and show that order importance in CNNs is model dependent. In addition, we show that depending on the model,
statistical relationships are crucial in establishing order with better performance.

Keywords Convolutional neural networks · Data preparation · Security · Malware detection · Cloud IaaS · Deep learning

1 Introduction

Convolutional neural networks (CNN) architectures have
recently evolved elevating computer image recognition (He
et al., 2015c) to an art form, which offers various options
depending on the need (Elhassouny & Smarandache, 2019).
CNNs are also used in nonimage related research, thus
understanding how CNN work with images should help us
leverage their application in other fields.

Entropy can be applied to increase detail (Zhao et al.,
2019) and reduce noise (Avula et al., 2020). By examin-
ing the entropy of an image e.g., the dog on the left side of
Fig. 1, and comparing the activation values found by ana-
lyzing the image with a shallow CNN (right side of Fig. 1),
we can see the CNN identifying patterns in entropy within
the image.

We hypothesize that recent CNN models employ novel
strategies to make identifiable information out of these
entropy patterns.

Explorations have been made in using CNN in fields other
than image classification e.g., texts (Lee & Dernoncourt, 2016),
sound samples (Deng et al., 2013), and medical diagnostics of
DNA (Mobadersany et al., 2018). Often the sources of data
have a naturally defined order, such as acoustical waves in a
sound or DNA in a sequence. However there are cases when
the data sources do not have a naturally defined order, e.g.,
a series of sensors on an automated vehicle (van Wyk et al.,
2020). Contrary to “unnatural” which denotes a relationship
with supernatural phenomena, we use the term “nonnatural”
as a definition of data sources where order was not defined in
nature. In most “nonnatural” cases, the researcher defaults the
matrix order to a structural relationship between data elements
mainly established by an arbitrary specification.

A particular subset of nonnatural data that has gained
interest is in detecting cybersecurity issues. Raw IP traf-
fic (Zhang et al., 2019; Liu et al., 2019), computer process
metrics (Abdelsalem et al., 2018), and industrial sensors
(Hu et al., 2019) are examples of datasets being used with
CNN in security-related fields. The ability of CNN to extract
features by identifying patterns from large datasets, is what
makes CNN successful. As we tie together more machines
and are connected, the amount of data reaches a point where

 * Randy Klepetko
 randy.klepetko@my.utsa.edu

 Ram Krishnan
 ram.krishnan@utsa.edu

1 Department of Electrical and Computer Engineering,
University of Texas at San Antonio, One UTSA Circle,
San Antonio, TX 78249, USA

/ Published online: 19 September 2022

Information Systems Frontiers (2023) 25:613–638

http://orcid.org/0000-0002-6473-9061
http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-022-10330-0&domain=pdf

1 3

linear tools become cumbersome in processing time, and
pattern finding in two and three dimensional space is what
CNN are designed to do. In many cases, researchers use
CNN as feature extractors later applied to decision networks
such as densely connected or recurrent layers. Properly com-
piling various data sources in a structure for a deep learn-
ing algorithm to analyze should be of concern when using
CNNs. We can also use our understanding of CNN in image
analysis to help improve the generation of patterns that assist
CNN in identifying relative security features.

Security can have many forms of data, all from a single
source, e.g., computer metrics (Abdelsalem et al., 2018).
They are strings, floats, and integers, all of which are limited
by various ranges and provided in an arbitrary sequence. In
our previous study (Klepetko & Krishnan, 2019) we demon-
strated that employing the structural order when identifying
malware is unsuitable when training a shallow convolution
neural network model if high accuracy and precision are
desired. Looking at images and understanding that the edge
and surface features were correlated pixels, we found that
using statistical relationships as a basis for the order does
improve performance. It appeared that grouping our data
points created artificial objects that shallow CNN could
identify as malware features.

Many researchers have designed novel CNN models for
improving vision recognition performance or limiting the
resources used. Some deep networks specialize in large
images, some speed and performance tradeoffs, while oth-
ers are designed with mobile applications in mind. Now that

CNN have matured to include multiple architectural models,
many of which are published and easily available, can these
predefined options have practical application in the security
space and will order be essential? We hypothesize that this
holds true for these deeper CNN architectures.

Deep neural networks comprise of internal hidden lay-
ers. Each model examined in this research are comprised
of different hidden layers, arranged in an assorted set of
structures. Comprehending what could be going on within
these so called “black boxes” is improved with several visu-
alization techniques that let the user understand what the
network is doing by eyesight. The visualization techniques
offer users transparency and an explanation (Selvaraju et al.,
2019) of the inner workings of the networks and assist users
at all stages of the network development life cycle. Early in
model construction these visualization techniques provide
details on failures, allowing the engineer to see how the
model changes affect the internal performance. As a net-
work matures, visualizing the hidden layers enhance confi-
dence that the model is identifying a proper set of features.
When a network exceeds human performance, the visuali-
zation techniques provide a computer teacher, instructing
users on novel strategies for examining the data. Examining
how CNN work with images provides a reference point that
assists in understanding how the network behaves when ana-
lyzing nonnatural data. An example of a set of visualization
results is found in Fig. 2. In this case a LeNet-5 CNN was
trained to discriminate between cat and dog images. Figure 2
shows the original image followed by a Saliency (Simonyan

Fig. 1 Image with a 3 wide Entropy of Primary Colors and CNN Level-2 Activations of Same Image

614 Information Systems Frontiers (2023) 25:613–638

1 3

et al., 2014), ScoreCAM (Wang et al., 2020), GradCAM
(Selvaraju et al., 2019), and GradCAM++ (Chattopadhay
et al., 2018) plots. These plots visibly identify different fea-
tures identified within the image. Will these visualization
tools help identify malware features within grids of cyber-
security data? Along with analyzing grid order with deeper
CNN models, we also explore the use of image analysis
visualization tools to assess if they can provide additional
insight into these deeper models analyzing nonnatural data.

The contributions of this study are as follows:

• We show that the ordering of rows and columns has a
significant influence on CNN performance, but the extent
is model dependent.

• We show that using statistical relationships to define
matrix order is a strong predictor of a good perform-
ing order, but the preferred statistical relationship is also
model dependent.

• We enhance the state of malware detection technology
by providing data preparation tools and methodologies
for ordering data by statistical relationships that improve
CNN feature extraction when analyzing security data.

• We determine if the current state of visualization tools
assists in viewably identifying features when analyzing
CNN’s reaction to nonnatural malware data.

The remainder of the article is organized as follows:
Section 2 discusses related work using CNN with nonnatu-
ral data. Section 3 outlines the methodology including, a
description of data ordering. Section 4 describes the analysis
procedure and evaluation results. Finally, Section 5 summa-
rizes and concludes this study.

2 Related Work

2.1 CNN and Nonnatural Data

As we understand CNN capabilities, its use cases continue to
expand. In this section, we examine the use of CNN by other
researchers using nonnaturally ordered datasets.

Lihao and Yanni (2018) analyzed the quality of rubber
tire treads using parameters measured during the manufac-
turing process. With four levels to the procedure and eleven
metrics sampled at each level, they provided a 4x11 matrix.
After vectorizing the parameters and filtering for noise, they
then fed them to a CNN, achieving a 94% accuracy. The
order of the grid construction was not discussed.

Using a one dimensional CNN as a feature extractor
for other machine learning algorithms (k-nearest neighbor
(kNN) with k = 1, support vector machine (SVM), and ran-
dom forest (RF)), Golinko et al. (2018), examined whether
the ordering of the source data for the CNN influenced the
final classifying algorithm with nonnatural “generic” data.
Using statistical correlation as a method for identifying the
relationships of adjacent data they showed that not preorder-
ing the data for CNN feature extraction is detrimental. In
addition they showed that using correlation as an ordering
scheme offered improvement in most cases, particularly for
kNN and SVM. They improved accuracy from 76% with no
feature extraction to 82% if the data points were ordered by
correlation before CNN feature extraction.

van Wyk et al. (2020) used information from robotic sen-
sors and actuators to design a robot collision detection sys-
tem using 66 features. They tested both an SVM regression
(SVMR) and a one-dimensional CNN and showed that the
CNN would perform better if it trained with sufficient data,
but the SVMR performed better with less training. The con-
struction of vector order was not discussed.

With connected and automated vehicles, van Wyk et al.
(2020) used cross-related sensor data (local speed, GPS
location, and accelerometer) fed through an analyzer to
identify whenever any of the sensors behaved anomalously.
They tested different analyzers using a Kalman filtering
(KF), CNN, and a CNN-KF hybrid. Each had unique ben-
efits. The order of the grid construction was not discussed,
but was trivial with three sensors over time.

2.2 Convolutional Neural Networks and Security

CNNs have found relevance in security-based applica-
tions. Their ability to extract features from large data pools

Fig. 2 CNN Visualization Tool Results of Dog Image

615Information Systems Frontiers (2023) 25:613–638

1 3

enables the algorithm’s nonlinear space to find patterns
instead of statically looking for distinct signatures, enabling
the dynamic/online detection of zero-day attacks. The data
sources are usually nonnatural.

After minor preprocessing raw IP traffic packets including
stripping the physical protocol layer, Zhang et al. (2019),
analyzed the packaged raw IP data in grids using CNN, lon
short term memories (LSTM), and a hybrid. They tested
for both binary classification (benign/maleficent) and mul-
ticlassification (benign + 10 maleficent types). They showed
all models achieved quite remarkable, near-perfect results.
Differences being, for binary classification, the CNN-LSTM
was slightly better than CNN, which was better than LSTM.
For multiclassification, CNN had some minor advantage in
precision over the CNN-LSTM, but LSTM was behind both.
Data order was defined per the packet specification by the
order of packets received.

Using process metrics as they are reported from hyper-
visors in a cloud environment, Abdelsalem et al. (2018),
placed them in a grid-like structure looking for malware as
it was injected into virtual machines (VMs). Per time seg-
ment, this produced a set of 35 metrics captured for each
process running on the VMs. The metrics were compiled
into a process row metric column matrix, which was sup-
plied to a Lenet-5 CNN (Liu and Zhao, 2007). Using the
order as found in the logs and specifications, an 89% accu-
racy was achieved. Using the same dataset and ordering
scheme, McDole et al. (2020) followed up with research
analyzing different CNN architectures comparing LeNet-5
with ResNet (He et al., 2015a) and DenseNet (Huang et al.,
2016). They showed that Dense-121 performed the best at
92%, whereas Lenet-5 trained in an order of magnitude less
amount of time and detected in one-third the time. Kimmel
et al. (2021) proposed other deep learning models, recurrent
neural networks (RNN), and tested the validity using LSTM
and bidirection LSTMs. They explore if the order affected
training and discovered that it does affect the performance
metrics for LSTM and Bi-LSTM. For instance, they realized
a precision of 99.95% with one random order and 98.46%
with another. That’s a difference between 1 fail in 2000 com-
pared to over 3 fails every 200.

2.3 CNN Models

As CNN mature, many models are being developed. Each
new model uses some new techniques to accomplish new
precision in computer image identification and object clas-
sification. In this study we examine five in particular. Incep-
tion network version-3 (Szegedy et al., 2014), ResNet (He
et al., 2015a), Xception network (Chollet, 2017), MobileNet
(Milton-Barker, 2019) and DenseNet (Huang et al., 2016).

In 2014, Szegedy et al. with Google (Szegedy et al., 2014)
were the first to publish splitting layers into different parallel

convolutions made of variously sized filters and factorizing
larger (NxN) convolutions into a series of lower order (1xN)
and (Nx1) convolutions to develop the Inception network.
The former increased the number of filter types per layer
and the latter reduced mathematical parameter count by an
order of magnitude. They also included a new optimizer
function, RMSProp, batch normalization in the classifiers,
and label smoothing to reduce over fitting. Version-3 com-
prises of 13 separated convolution stages, each of which is
a group of factored convolutions, with a total of 95 convolu-
tional layers. It proved that layers do not need to be stacked
sequentially by outperforming the counterpart models in the
ImageNet 2014 challenge.

In late 2105, He et al. (2015b) introduced ResNet which
adding a new feature to the network topology that revolu-
tionized CNN, the residual connection. This is an additional
link from the input of a convolution stage directly to the
output, using addition, feeding the input of the next stage.
This significantly alleviates the vanishing gradient problem
which is a major issue in training deep networks. ResNet
accomplishes this by maintaining a connection to the origi-
nal granularity of pixels and smaller features while compil-
ing the more complex objects. With it they won first prize
in the 2015 ImageNet competition with a top five error rate
of 3.57% taking the prize in all categories, classification,
localization, and detection. They also won the categories
of detection and segmentation in the 2015 COCO competi-
tion. There are multiple published versions of ResNet, all
based on the number of layers. We employ ResNet-18 in
this research.

In 2017, Chollet (2017) introduced the Xception network.
Inspired by the inception network, Chollete reduced the
complexity and parameter count by adding depth separable
convolution convolutions that operate over several filters at
a time, usually along a single line of pixels. These are paired
with normal convolutions in stages. The Xception model
includes residual links and has 14 stages comprising of 40
convolutional layers. Compared with Inception, Xception
has slight advantage in fewer parameters and a moderate
improvement in accuracy.

A year later, Howard et al. (2017) introduced MobileNet
to minimize the CNN footprint for mobile access. Like
Xception, MobileNet also uses depth separable convolution
but reduces the width of later layers instead of expanding
them as in Xception, thereby significantly reducing param-
eter count.

Last revised in 2018, Huang et al. (2018) introduced
DenseNet. Like residual links, they add connections around
layers; however, instead of using addition as the function
for combining the input source with the output, they used
concatenation, with each stage increasing filter depth of the
next stage, creating a denser input cluster. This concatena-
tion compiles all information previously gathered together

616 Information Systems Frontiers (2023) 25:613–638

1 3

as input from earlier stages and forwards the details over
the current one to the latter stages. This reduces the infor-
mation lost by the addition process used in residual links
by maintaining initial input integrity, further alleviating the
vanishing gradient problem. Huang et. al. reduce parameter
count by including bottleneck stages in between dense stages
which skip dense links and include a depth separable convo-
lution to reduce the depth and a pooling layer for reducing
width and height. We employ the smallest version, Dense-
121 in this study.

2.4 Visualizing Convolutional Neural Networks

Methods for visually revealing the hidden layers that provide
researchers comprehension behind the decisions of neural
networks are evolving as the field matures. The common
methods are some form of gradient visualization (Erhan
et al., 2009), sensitivity to perturbations (Ribeiro et al.,
2016), class activation maps (Zhou et al., 2015) (CAMs),
or a confluence of these. In this study we use four visuali-
zation tools: Saliency (Simonyan et al., 2014), ScoreCAM
(Wang et al., 2020), GradCAM (Selvaraju et al., 2019), and
GradCAM++ (Chattopadhay et al., 2018) maps. We explore
using these tools with nonnatural data, and from our under-
standing this is the first time CNN visualizations are applied
in the analysis of nonimage data.

Saliency maps, introduced by By Simonyan et al. (2014)
in 2014, are produced by taking the derivative of a class
score with respect to the individual input pixels after a sam-
ple input image is tested. This derivative is taken with a
single backpropagation step after the initial classification is
made and results in an image that identifies pixels that have
more or less influence on the final classification score. The
map highlight specific details but tends to be noisy.

GradCAM, detailed by Selvaraju et al. (2019) in 2016,
is a modified version of class activation map (Zhou et al.,
2015) (CAMs). CAM’s are generated by taking the activa-
tion maps of the penultimate layer for a network after it has
identified a class for a particular testing sample and sum-
ming the maps with the associated weights to generate acti-
vation regions of the original image. GradCAM uses the
gradients it produces with a backpropagation step instead of
using the filter weights. It also includes a rectified linear unit
(ReLU) function to the result to truncate out gradients that
do not positively influence the class. Thereby they gener-
ate higher detail than CAM because the gradients indirectly
include parameters from median layers. In cases where there
is only a single layer, the gradient is the filter weights, so
GradCAM is a generalized form of CAM.

GradCAM++, introduced by Chattopadhay et al. (2018)
in 2018, is a modified GradCAM by adjusting the normal-
izing factor used to determine the weights for the individual
feature activation maps gradients. GradCAM++ replaces the

constant in GradCAM with a function of the gradient and
activation map, providing more granularity to the response
a specific gradient has on the resulting visualization.

ScoreCAM, devised by Wang et al. (2020) in 2020, goes
further by dropping the gradients altogether and instead
include a contribution value to measure the importance of
each activation map. This contribution value is derived by
taking the layers output values, up-sampling them to match
the input dimensions and then comparing it to the original
input to assign it a value. This assists the resulting map to
be more discriminative around the most influential pixels
within the input image.

Generally visualizations attempt to highlight pixels that
have the strongest total change, either through weights or
gradients, to make a classification. Inversely, the areas which
do not require any adjustment for a proper classification are
not highlighted. For example, in the dog image visualiza-
tions in Fig. 2 (when trained versus a cat) it is seen how
the different methods highlight (in blue) areas that require
the least adjustment, or are the most influential for class
decisions. The different visualizations share various combi-
nations of activation maps, adjusted by gradients, weights,
and derivatives, so each provides a different visual result.
In Salience, the eyes, chin, and some background pixels
have little influence or are insignificant. This is because all
training images had these features (cats and dogs) so were
not a significant influence on the decision. In ScoreCAM
the body has the most influence. Most outlines of the dog
are better captured by GradCAM, whereas GradCAM++
appears to operate between ScoreCAM and GradCAM. The
relationships between the visualizations and original image
seem apparent for a natural image, but what will they high-
light with nonnatural data that appears stochastic? Can they
help us identify features that represent maleficence within
a sample?

Our previous study (Klepetko and Krishnan, 2019) modi-
fied the techniques discussed by Abdelsalem et al. (2018)
by exploring the relationship between the ordering of rows,
columns, and shallow CNN performance when analyzing
VM process metrics and malware infections. We identified
several structural relationships on which to base our order-
ing scheme, included the use of a statistical relationship as
an option for ordering the metric columns, and compared
them against a background of random orderings. We showed
that using structural relationships as an ordering appears to
have no more advantage than a random order, and statistical
relationships offer some performance advantage.

In this study we examine the affect order has when using
five deeper models and use visualization tools in an attempt
to better understand what is going on within the layers.
We find that by establishing order using statistical correla-
tion as a basis, we can increase overall performance and
achieve a 99% accuracy in detecting injected malware. The

617Information Systems Frontiers (2023) 25:613–638

1 3

visualization tools assist in the analysis; however, the result-
ing plots are not as intuitive as they are for images.

3 Methodology

3.1 Dataset ‑ Metric by Process Grids

Our data sources are process metric samples taken from
VMs in a cloud IaaS environment. These VMes are arrayed
as a LAMP stack hosted website. The application server is
injected with malware halfway through our experiments.
Every sample is for a specific process running on a VM ker-
nel and contains a series of M number of metrics per process
(Table 1) during a segment in time. Stacking P number of
processes captured during a single slice of time results in
the matrix:

For our experiments, 35 metrics expanded through
one-hot encoding to M = 75 metric columns and we made
available room in the matrix for as many as P <= 150 pro-
cess rows. The 29+ million process samples were organ-
ized around 114 experiments (infections), and comprised
of 31,064 matrices, about half of which were considered
infected. The experiments were split into 60% training, 20%
validation, and 20% testing. The entire sample set for each
experiment was included in the group it was assigned; thus,
no experiment was split between training, validation, and
testing.

Xt =

⎡
⎢⎢⎢⎢⎢⎣

m1 m2 … mM

p1 xm1p1
xm2p1

… xmMp1

p2 xm1p2
xm2p2

… xmMp2

⋮ ⋮ ⋮ ⋱ ⋮

pP xm1pP
xm2pP

… xmMpP

⎤⎥⎥⎥⎥⎥⎦

3.2 Row and Column Ordering Algorithms

In this study we demonstrate whether row/column order-
ing affects the performance of different CNN models. Our
initial method was to randomly sort the rows and columns.
We randomly generated ten rows and ten column orders, i.e.,
100 unique orderings to use as a backdrop for comparison.

In our previous study we explored the use of structural
relationships as one method for establishing order. We found
several relationships as determined by specification, log
location, process number, parent/child and sibling status,
related VM, and naming convention. On average these order-
ing methods performed no better than the random option.
Because these ordering methods were previously defined
we include them in our processing and as part of the general
backdrop along with the random 100 orderings. We do not
examine them specifically in the evaluation section of this
article.

Perhaps images provide us some insight on how to best
order our matrices. CNNs are used to identify objects. What
makes up an object in an image? Statistically, an object is
a set of highly related pixels. All pixels will have a similar
shade. Pixels outside the object boundaries usually have few
patterns that match inside the object. This edge can be found
using the minimum of the statistical correlation relation-
ship between adjacent pixels. It is this fact that led to many
advances in image compression techniques (Liu and Zhao,
2007; Jiang & Bruton, 1999; Wang & Shen, 2005).

We hypothesize that artificial objects should be created
by grouping the rows and columns to increase the average
statistical relationship between neighboring data points
while decreasing the overall entropy of a grid. In our previ-
ous study, we found a relationship, statistical correlation
�mimj

 (Table 2) between metric columns mi and mj for all
processes, comparing results from a LeNet-5 CNN with
ReLU, we also found that ordering based on statistical cor-
relation improved performance. We attempted to disperse

Table 1 Virtual Machine Process Metrics

Metric Category Description

Status Process status, Current working directory
CPU information CPU usage, CPU user space, CPU system / kernel space, CPU children user space, CPU children system space.
Context switches Voluntary context switches, Involuntary context switches
IO counters Read requests, Write requests, Read bytes, Write bytes, Read chars, Write chars
Memory information Swap memory, Proportional set size (PSS), Resident set size (RSS), Unique set size (USS), Virtual memory size

(VMS), Dirty pages, Physical memory, Text resident set (TRS), Library memory, Shared memory
Threads Used threads
File descriptors Opened file descriptors
Network information Received bytes, Sent bytes
Group Information Group ID real, Group ID saved, Group ID effective

618 Information Systems Frontiers (2023) 25:613–638

1 3

the artificial objects by minimizing the correlation between
columns and it degraded performance. We include these col-
umn orderings in our evaluation details using other CNN
models. This comprises of three relationship functions, met-
ric correlation (Table 2), the absolute value of the correla-
tion �ABSmimj

=
|||�mimj

||| to increase object edge creation, and
anticorrelation, �ANTImimj

= 1 −
|||�mimj

||| , to test a counter
hypothesis dispersing the objects and increase the entropy.

In our previous study, we attempted to derive a statistical rela-
tionship for the process rows. Because there could be as many as
150 processes statistically related over the 35 metrics, with each
sample being unique per process, our initial queries became
infeasible, resulting in a vanishing correlation when a large set
of samples unrelated to the process are included in the calcula-
tions. In this study, we pared down the queries so only a pair of
processes pi and pj over a single metric mk were calculated at a
time. We reduced the data set for this specific relation value to
only include samples for these processes when they were running
on the same machine synchronously. This reduced the query time
from what was months for all process pairs around a single met-
ric, �mkpipj

∀i, j , to roughly 24 hours. We then incremented
through each metric. Once these calculations were finished, we
had a full set of process pair correlation values per metric,
�mkpipj

∀i, j, k.
Summing the correlations for a single pair we had a sta-

tistical relationship value between the processes �SU Mpipj
:

Because we processed the row relationship values per metric
before we summed them, we purposely chose which order of
metric to derive these relationship values. We already had a
relative importance order in our metric correlations from our
previous research (Eq. 2 above). By summing all columns’
correlations for a single metric we have:

(3)�SU Mpipj
=

M∑
k=1

(�mkpipj
)

(4)�TOTmi
=

M∑
j=1

(�mimj
)

This is the total metric correlation on which to order their
importance, largest to smallest. We also perform the same
for process rows, resulting in the total process correlation:

Along with our fully correlated row orders derived from Eq. 3,
we test some other options derived from this function. Like
metric columns, we test similar relationship ideas with both
the absolute values of the correlations, �ABSpipj =

∑M

j=1

����mkpipj

���
and ant-correlations

�ANTIpipj
=

∑M

j=1
(1 − |�mkpipj

|).
With this statistical relationship value, we rank the impor-

tance of each metric column and process row with each
other. We built a methodology to construct the order. The
process is generic and modular with regards to the data
source ,fi row or column, and the function used to derive the
statistical relationship value �fifj . The ordering methodology
uses the steps in Algorithm 1.

Occasionally, there are ties. This was particularly true for
the anticorrelated function. Many pairs of process rows did
not correlate. We would settle ties by examining the next
set of neighbors to see which set increased the relative total
relationship value of the entire grid.

After compiling the statistically related orders with the
previously defined order sets, we had 252 distinct grid orders
to compare. A visual example of the grids in different order-
ing sets is shown in Figs. 3 and 4. We show two slices, one
benign the other infected, using different row and column
ordering schemes. They include a 3-square pixel entropy
filter plot to highlight possible patterns the CNN may be
detecting. One order set, Fig. 3, has both rows and columns
correlated while the other, Fig. 4, has them anticorrelated.
We constructed objects using the correlated order and dis-
persed them into tiny objects using the anticorrelated order.
Will the deeper CNN models perform better when analyzing
these snapshots than an arbitrary random order?

4 Evaluation

4.1 Test Beds

We run our preprocessing and analysis using two desktops
with the following specifications:

Desktop-1

• Central Processor Unit: IntelⒸCore™i7-8700 CPU @ 3.2
GHz x 12

• Memory: 15.6 GB
• Graphical Processor Unit: GeForce™GTX 1070i/PCIe/

SSE2

(5)�TOTpi
=

P∑
j=1

(�SUMpipj
)

Table 2 Metric and Process Correlation Functions

Metric Statistical Correlation Function

�mimj
=

E(xmi
xmj

)−E(xmi
)E(xmj

)√
E(x2

mi
)−E(xmi

)2⋅
√

E(x2
mj
)−E(xmj

)2
(1)

Process Statistical Correlation Function

�mkpipj
=

E(xmkpi
xmkpj

)−E(xmkpi
)E(xmkpj

)√
E(x2mkpi

)−E(xmkpi
)2⋅

�
E(x2mkpj

)−E(xmkpj
)2
(2)

619Information Systems Frontiers (2023) 25:613–638

1 3

4.2 CNN Models ‑ Chosen Through Experimentation

In our previous study, we examined the use of a shallow CNN
model, LeNet-5 with ReLU as an activation function. In this
study, we assess if our statistical relationship hypothesis would
hold with other forms of CNN. We initially experimented with
ResNet-50 and found that the training times took longer per
epoch and more epochs than LeNet-5. LeNet-5 would usually
saturate training in 20 epochs, but Resnet-50 would take as
long as 50. We shifted to ⒸAuto-Keras, and by 20 epochs, it
could settle on a plain CNN with a couple of dense layers but
failed to produce any meaningful performance.

We then took a modularly broad but targeted approach by
recoding our test ground to use the recently released ⒸKeras
application set of deep learning models. Using a limited set
of ordered experiments, we tested model training satura-
tion. Because of our methodology, using the same dataset for
the different models was simply changing the model name
within the script. Our post calculation analysis found that
five models would saturate training much quicker than the
others, within three epochs, so we chose to compare them
in order of their release date: Inception-V3 (Milton-Barker,
2019), ResNet-18 (He et al., 2015a), Xception (Chollet,
2017), MobileNet (Howard et al., 2017), and DenseNet121
(Huang et al., 2016).

To help in our analysis, we examined the model summary
so we could identify the parameter counts and see if there
might be some relationship between that and order perfor-
mance via the architecture design. The details are found in
Table 3.

4.3 Result Plots

Because malware infections are rare compared with normal
machine activity and the relevance of proper identification
is high, we decided to compare the precision/recall (PR)
curves. We start by showing the results for Inception-V3.
In Fig. 5, all of the PR curves are the light background with
the dark lines representing a subset of PR curves generated
running the model over a particular order set. Notably, the
plots are scaled into 50%–100%. Clearly Inception prefers
correlated columns and ABS-correlated rows, whereas cor-
related rows offer another well-performing alternative, but
anticorrelated rows should be avoided.

We follow with the results from ResNet-18 in Fig. 6.
Notably, these plots are at 0–100% scale. It is obvious by the
wide varieties in PR curves that ResNet-18 is very suscepti-
ble to minor changes in order. For ResNet-18 anticorrelated
rows and columns perform better than average, whereas the
other orderings have only minor variation around the poor
average.

Algorithm 1 Derive Statistical Relationship Order

• OS: 64-bit UbuntuⒸ20.04.2 LTS (Gnome 3.36.8)
• CUDA™: 11.1
• Python: 3.6

Desktop-2

• Central Processor Unit: IntelⒸCore™i7-9700K CPU @
3.6 GHz x 8

• Memory: 15.5 GB
• Graphical Processor Unit: NVIDIA GK210GL (Tesla

K80)
• OS: 64-bit UbuntuⒸ20.10 LTS (Gnome 3.38.3)
• CUDA™: 11.2
• Python: 3.6

We used Tensorflow™v2 with Tensorboard™, the underly-
ing engine, to perform the CNN analysis. Comparing these
machines, we found that the Tesla machine could handle
larger CNN models with two cores and more GPU memory,
whereas the GeForce machine would process about 30%
faster with the later CUDA capable features.

620 Information Systems Frontiers (2023) 25:613–638

1 3

Our next model is Xception, and the results are depicted
in Fig. 7. Notably this model seems to be order ambivalent
with near-perfect results every time, but the statistically
related order performs well if not better than average. Only
the ABS-correlated columns fell below average, but this was
by only 0.0007 area under the curve (AUC). It appears the
best performance is found using correlated rows and anticor-
related columns.

We included MobileNet as a small format option with it
intended to be used in mobile devices. The results are depicted
in Fig. 8. Like ResNet-18, MobileNet seems to be very reac-
tive when there are changes in order. We have the plots at
full zoom, 0–100%, to observe all curves. Unlike ResNet-18
(0.898 AUC), MobileNet appears to respond better on average
(0.958 AUC). It also appears that MobileNet loves any statisti-
cal relationship in column order, but choosing a random order
is better than anything we analyze for row order.

In our final examination, we analyze DenseNet-121
(Fig. 9). Like Xception, DenseNet-121 had a vary high AUC
regardless of row or column order, with almost near-perfect
results in every attempt. Only a couple of curves dropped
below 97%, and we had the figure zoomed in at 80%–100%.
Correlated rows and columns are the best option, but all of
the statistical relationships seem to provide average if not
better results.

4.4 Model Comparison

For comparison, we include a breakdown of the different model
performances while detecting malware from process metric
samples and we derived the following tables. First Table 4,
illustrates the average (mean) AUC of the PR curves for the

different ordering schemes along the two axes. Because malware
detection requires high precision, we include a second Table 5
which is a transformation of the same numbers but in relation
to the percentage of improvement (or degradation) against the
average performance for all ordering schemes.

There is improved performance over the average in every
model using a statistical correlation relationship to determine
the order on the shorter column axis and for three of the five
models on the longer row axis. We see anticorrelation also
improves performance on the shorter column axis, but only
doing so for two models on the longer row axis. Using the abso-
lute value of the correlation performed poorer than average in
most cases. We see that ResNet-18 always appreciates the anti-
correlated order, whereas most of the remaining models prefer
using regular correlation. MobileNet is the only model that was
negatively responsive to statistical related orderings, and that
was only when arranging the longer row axis. It responded very
well when using any statistical relationship to order the shorter
column axis.

4.5 Visualizations

For further analysis, we use several visualization tools on
specific data samples from the testing set to explore what
the CNN models are doing within the hidden layers. To
see the differences between a poor-performing order and a
good one, we chose the extreme options from each model’s
results. In the Table 6 we display the worst and best order-
ing options for each model including associated mAP score
achieved during testing. Then the two extreme options of
each model, the highlighted rows, were then analyzed using
Saliency, GradCAM, GradCAM++, and ScoreCAM.

Fig. 3 Black and White Plot of Correlated Samples with 3 Wide Entropy

621Information Systems Frontiers (2023) 25:613–638

1 3

With every model for the worst and best orders we pro-
duced a set of five visualization plots for a benign and
infected sample. This was the same sample pair for all visu-
alizations, testing sample #159 (of 6000+) labeled benign
and testing sample #165 infected. The only difference was
the order in which the rows and columns were arranged.
In all experiments, these two samples were predicted accu-
rately, though not always at 100%. Plots of these visualiza-
tions and a discussion of them are found per CNN model
over the following pages:

When we compared the Inception-V3 visualizations from
the infected sample with the benign sample in the worst order
(Figs. 10 and 11, respectively), we see how there were concen-
tration of pixels within the Salience map that are insignificant,
with infected showing a higher concentration. ScoreCAM shows
a definite direction toward the upper half of the grid for benign
with a counter direction for the infected. GradCAM shows it
uses the whole grid in making a benign decision, while show-
ing a similar response with the infected sample as ScoreCAM.
GradCAM++ shows that the lower region has more influence
over the benign decision than the infected sample.

In the best ordering for Inception-V3, the visualizations
for the same samples are in Figs. 12 and 13. The Salience
insignificant pattern is in clumps with benign comprising
of two masses spread top to bottom, where as the infected
sample has three. ScoreCAM produced what appears to be
identical influence patterns for the infected and benign sam-
ples with the lower half having the influence, whereas Grad-
CAM informs the entire grid has some influence over the
benign sample while the lower half in the infected sample.
GradCAM++ informs us that the lower half influences both

the benign and infected samples, but the infected sample is
more so.

Comparing the worst order with the best order for
Inception-V3, the best order has the data element
clumped together in blocks of matching values, whereas
the worst order has the data elements dispersed. The dif-
ference between mAP percentages is spread of an 11%
or a 89% improvement. The Salience plots clearly show
that the denser the data clumps the more source data is
insignificant as the best order allows the model to focus
on the important elements. In addition the other visu-
alizations have fewer similarities between the benign
and infected samples in the worst order analyzed by
Inception-V3 (Fig. 14).

Examining the ResNet-18 visualizations, they appear very
different than those for Inception-V3. We see this within the
Salience plot of the worst order tight clusters of activation,
the benign sample having five insignificance clusters, two of
them densely packed and two lightly packed. The infected
sample in Fig. 15 has only three insignificant clusters,

Fig. 4 Black and White Plot of Anticorrelated Samples with 3 Wide Entropy

Table 3 Model Parameter Count and Process Times

CNN Layer Parameter Count Desktop-2 3-Epoch

Architecture Functional Dense Train Time (min)

Inception-V3 21,802,208 12,290 2:45
ResNet-18 11,186,698 162 11:43
Xception 20,860,904 61,442 6:03
MobileNet 3,230,338 16,386 1:20
DenseNet-121 7,031,232 16,386 3:54

622 Information Systems Frontiers (2023) 25:613–638

1 3

but one is very dense and one light. The infected clusters
appear in similar locations to three of the benign clusters
(Fig. 14). The CAM plots appear to indicate different things:

ScoreCAM and GradCam show almost exact opposite
regions of the data having influence, with ScoreCAM favor-
ing the left side of the data samples, and GradCAM favoring

Fig. 5 Inception V3 CNN model PR Curves

623Information Systems Frontiers (2023) 25:613–638

1 3

the right. GradCAM++ is also favoring the right side but
in different regions. The infected and benign samples show
influence from different regions of the data sample in all

three CAM plots. Notably this experiment performed worst
out of all of them, achieving only a 50.31% mAP score

Fig. 6 ResNet-18 PR Curves

624 Information Systems Frontiers (2023) 25:613–638

1 3

The ResNet-18’s best order performed quite the oppo-
site manner, achieving a near-perfect mAP of 99.99%. The
Salience plots are extremely sparse, showing that this net-
work found that most data has a significant influence on

the decision. The sparse insignificant clusters have a sin-
gle local density in both the benign (Fig. 16) and infected
(Fig. 17), samples, Fig. 17, but in different regions of the
sample. Again, the CAM plots show different things, with

Fig. 7 Xception PR Curves

625Information Systems Frontiers (2023) 25:613–638

1 3

ScoreCAM finding the top left significant in both samples,
including the bottom right in the infected sample. Both
GradCAM and GradCAM++ plots show the entire sample

has influence, except for GradCAM++ infected sample
which finds the bottom right insignificant. Notably, all three

Fig. 8 MobileNet PR Curves

626 Information Systems Frontiers (2023) 25:613–638

1 3

CAM plots found very similar regions of the benign and
infected samples relevant.

Contrasting ResNet’s best and worst ordering schemes,
in the best sample, the data patterns are slightly less

contiguous. Something about ResNet-18’s architecture
very much appreciates the data slightly looser patterns,
by 49.68% mAP points, or a 99.97% improvement. The
Saliency plots’ differences are quite extreme with dense

Fig. 9 DENSE121 PR Curves

627Information Systems Frontiers (2023) 25:613–638

1 3

insignificant regions with the worst ordering, but are very
sparse and light clusters in the best ordering. Almost the
opposite response is seen in the Inception-V3’s Saliency
plots. The CAM plots are also quite different with the benign
and infected regions in the worst samples showing very dif-
ferent influence regions, whereas the influence patterns
between the benign and infected samples are very similar in
the best ordering, with minor variation.

Xception also has distinct patterns within the visualiza-
tions, different from the previous two models. In the worst
case, the Saliency of the benign (Fig. 18) and infected
(Fig. 19) appear to have a grid like pattern with the infected
sample having slightly more intense insignificant blocks
within the influence grid. All CAM plots show some simi-
larities, with the center of the sample being insignificant
but each to a different degree. ScoreCAM has an extremely
intense insignificant region with minor variations between
the benign and infected samples. Benign is slightly less
intense and has a slight extension going to the upper left,
whereas the infected sample is more intense, particularly in
the upper middle with a strong extension out to the middle
left. GradCAM++ has its center insignificant region very
dim in the benign sample, but very similar to ScoreCAM in
the infected sample. GradCAM has no insignificant region
for the benign sample, but the infected has a small but
intense insignificant region in the center with three lower
isolated lobes on the edges of the lower half.

The best order for the Xception’s visualization dif-
fers from those of the previous two models, but the Sali-
ency plots do have a similar grid-like pattern. The benign
(Fig. 20) has only a few very intense insignificant clusters
in a region of the grid at the lower left of the data sample,

whereas the infected’s (Fig. 21) insignificant clusters are
less intense and spread throughout the influence grid. The
CAM plots between the benign and infected samples are
almost identical, with most data sample having influence.
ScoreCAM has a bar of insignificance intensely crossing the
top right corner, whereas GradCAM has a little but intense
bubble on the lower left, and GradCAM++ has no insignifi-
cant region for either infection status.

Comparing the best and worst orderings, where there is
a 3.6% spread but a 97.8% improvement. The differences
between visualizations are stark. The data samples in the
worst order appear more stochastic whereas, in the best
order, the data has cross-like patterns with some breaks
between. The Saliency plots for the best order have more
intense but concentrated insignificant regions. The CAM
plots for the best order are nearly identical between the
infected and benign samples, whereas the plots have distinct
characteristics between infection status for the worst order.

Examining the MobileNet’s visualizations, the Salience
plots appear very noisy with scattered insignificant data
points spread thoughout the sample. Both have the lower
half more intense, but upper half is more sparse in the benign
sample, (Fig. 22) than the infected (Fig. 23). The CAM
plots all appear to show similar responses displaying that
the lower half is insignificant. ScoreCAM is more so, with a
deep intensity on the benign sample, whereas skewed a lit-
tle to the right of infected sample. GradCAM’s benign plot
shows no insignificant region, whereas the infected sample
shows insignificance in the lower half and is skewed to the
middle left. The GradCAM++ graphs also have the lower
half marked as insignificant but skewed right and left on the
benign and infected sample respectively.

Table 4 Mean AUC for
Precision Recall Curves

CNN All Corr ABS-Cor Anti-Cor Corr ABS-Cor Anti-Cor
Architecture Options Rows Rows Rows Cols Cols Cols

Inception-V3 94.35% 96.06% 96.60% 89.65% 96.53% 94.65% 95.88%
ResNet-18 89.85% 87.02% 86.56% 94.53% 91.24% 89.23% 95.13%
Xception 99.70% 99.73% 99.80% 99.73% 99.87% 99.64% 99.79%
MobileNet 95.87% 93.76% 92.29% 91.86% 96.55% 97.01% 97.55%
DenseNet-121 99.53% 99.70% 99.43% 99.20% 99.60% 99.52% 99.56%

Table 5 Percentage
Improvement Over Average
(Mean) Performance

CNN 100%- Corr ABS-Cor Anti-Cor Corr ABS-Cor Anti-Cor
Architecture All Mean Rows Rows Rows Cols Cols Cols

Inception-V3 5.65% 30.27% 39.82% –83.19% 38.58% 5.31% 27.08%
ResNet-18 10.25% –27.88% –32.41% 46.11% 13.69% –6.11% 52.02%
Xception 0.30% 10.00% 33.33% 10.00% 56.67% –20.00% 30.00%
MobileNet 4.13% –51.09% –86.68% –97.09% 16.46% 27.60% 40.68%
DenseNet-121 0.47% 36.27% –21.28% –70.21% 14.89% –2.13% 6.38%
Total –2.54% –67.22% –194.38% 140.30% 4.68% 156.16%

628 Information Systems Frontiers (2023) 25:613–638

1 3

The graphs produced for the MobileNet’s best order-
ing scheme are slightly different from the worst we just
reviewed. The Saliency plots are still noisy in appearance,
but the insignificant data points crowd around the left side of
the graph. The benign (Fig. 24) and infected (Fig. 25) appear
nearly identical with the infected sample slightly more

intense. ScoreCAM shows a strong band of insignificance
horizontally across both samples, but the benign is a trian-
gle shape, starting on the middle left and extending toward
both right-hand corners. GradCAM and GradCAM++ share
almost identical patterns with the benign sample having no
insignificant region whereas the infected has a large bubble
on the upper half of the left edge. The difference between
the two is that GradCAM++ is more intense.

Compar ing the best and worst order ings for
MobileNet’s experiments, it is obvious that the model
performance correlates to the data aligning with the
long side of the grid. The differences are stark with a
mAP spread of 40.9% or an improvement of 99.56%. The
Salience maps appear to share this alignment, with the
best performing order aligned vertically along the longer
row axis. There are distinct differences within the CAM
plots when comparing the best and worst orderings but
differentiating on to how that relates to performance is
difficult to discern. Although the insignificant regions
all appear to cover the same general area when relat-
ing to the infection status, GradCAM and GradCAM++
have slightly less overall intensity in the best order. The
noticeable major variation between the order schemes is
that GradCAM++ considers the entire benign sample a
significant deciding influence for the best order.

DenseNet-121 has the highest performing worst order
at 96.36%. Its Salience maps have a general but faint grid-
like appearance with different bubbles of insignificant clus-
ters over certain regions. The benign sample (Fig. 26) has
tighter clusters in the upper middle of the map whereas the
infected (Fig. 27) is more spread out with one intense cluster
in the lower center. The CAM maps show similar regions
of insignificance. The benign sample has them all on the
upper half, but the ScoreCAM plot of the region is the most
intense going from the top-left to the right side whereas the
GradCAM++ plot is missing the top-left corner and Grad-
CAM mostly comprises of an intense bubble on the upper-
left edge. The infected sample has insignificant regions in
the same general area but is quite distinct in form from the
benign sample. All three have a strong band on the top edge,
with ScoreCAM leaning sightly right, GradCAM leaning
slightly left, and GradCAM++ leaning heavily left. They
also all have moderate shapes over the lower right edge.
ScoreCAM is a semicircle, GradCAM is a triangle whose
center vertex reaches the left side, and GradCAM++ is just
a vertical bar.

The best order for DenseNet-121 has very similar Sali-
ency maps between the infected status. Both the benign
(Fig. 28) and infected sample (Fig. 29) have a band of clus-
tered insignificant points going through the upper middle
of the graph. The major difference is the infected are more
intense and localized, whereas there is a general dispersion
of lightly insignificant clusters found through the benign

Table 6 Worst Four and Best Four Performing Order Schemes per
CNN Architecture

CNN Row Order Column Order mAP Model
Architecture (Processes) (Metrics) Rank

Inception-V3 Anticorrelation Random5 %87.66 Worst
Inception-V3 Anticorrelation Random4 %87.98
Inception-V3 VMPID Random2 %88.03
Inception-V3 Anticorrelation Random1 %88.04
Inception-V3 ABS-Correlated Anticorrelated %98.33
Inception-V3 Alphanumeric Anticorrelated %98.47
Inception-V3 ABS-Correlated Random5 %98.54
Inception-V3 ABS-Correlated Correlated %98.68 Best
ResNet-18 Random1 Original %50.31 Worst
ResNet-18 Correlated Random9 %50.7
ResNet-18 VMPID Random1 %51.11
ResNet-18 ABS-Correlated Random1 %51.56
ResNet-18 Random10 Random3 %99.96
ResNet-18 Random10 Original %99.97
ResNet-18 PIDVM Random6 %99.99
ResNet-18 Random1 Random9 %99.99 Best
Xception Random7 Random4 %96.32 Worst
Xception Sibling Random6 %97.11
Xception Random7 Random6 %98.04
Xception Random7 Random1 %98.41
Xception Correlated Random6 %99.92
Xception Random3 Random8 %99.92
Xception Random4 Random1 %99.92
Xception Random3 Random5 %99.92 Best
MobileNet Alphanumeric Original %58.92 Worst
MobileNet ABS-Correlated Random8 %62.09
MobileNet Alphanumeric Random1 %62.11
MobileNet Anticorrelated Random5 %64.65
MobileNet Sibling ABS-Correlated %99.8
MobileNet ABS-Correlated Anticorrelated %99.81
MobileNet ABS-Correlated Correlated %99.81
MobileNet Correlated Random5 %99.82 Best
DenseNet-121 ABS-Correlated Random5 %96.36 Worst
DenseNet-121 Alphanumeric Random9 %97.13
DenseNet-121 Anticorrelated Random10 %98.43
DenseNet-121 Random7 Random2 %98.52
DenseNet-121 Alphanumeric Random1 %99.85
DenseNet-121 Random3 Random3 %99.87
DenseNet-121 Alphanumeric Correlated %99.87
DenseNet-121 VMPID Random1 %99.87 Best

629Information Systems Frontiers (2023) 25:613–638

1 3

Salience visual. The CAM maps show definite variation
between the benign and infected samples. ScoreCAM has a
large band of insignificance going from top the left-edge to

the lower-right regardless of infection status, but the benign
sample has a strong band of influence along the top. Grad-
CAM has a strong bubble of influence on the lower-left edge

Fig. 10 Inception-V3’s Worst Order (Anticorrelated/Random-5) Benign Sample #159 Visualizations (Pred: 3.6e-9)

Fig. 11 Inception-V3’s Worst Order (Anticorrelated/Random-5) Infected Sample #165 Visualizations (Pred: 1)

Fig. 12 Inception-V3’s Best Order (ABS-Correlated/Correlated) Benign Sample #159 Visualizations (Pred: 6.9e-10)

630 Information Systems Frontiers (2023) 25:613–638

1 3

of the benign sample, which shifts up and stretches over to
the other side of the infected sample. GradCAM++ shows
full influence on the benign sample, whereas a similar band

of insignificance as the other CAMs, starting from the top
left that becomes more intense towards the right edge.

Fig. 13 Inception-V3’s Best Order (ABS-Correlated/Correlated) Infected Sample #165 Visualizations (Pred: 1)

Fig. 14 ResNet-18’s Worst Order (Random-1/Original) Benign Sample #159 Visualizations (Pred: 5.9e-5)

Fig. 15 ResNet-18’s Worst Order (Random-1/Original) Infected Sample #165 Visualizations (Pred: 0.9991)

631Information Systems Frontiers (2023) 25:613–638

1 3

DenseNet-121 has the smallest variation in the differ-
ences between best and worst orderings, with only a 3.51%
mAP spread, but even here, when the best is 99.87%, near

perfection (1 fail in 333), the improvement above 96% (1 fail
in 25) is an order of magnitude or a 96.4% improvement. The
differences between data samples are almost indiscernible.

Fig. 16 ResNet-18’s Best Order (Random-1/Random-9) Benign Sample #159 Visualizations (Pred: 0.0132)

Fig. 17 ResNet-18’s Best Order (Random-1/Random-9) Infected Sample #165 Visualizations (Pred: 0.528)

Fig. 18 Xception’s Worst Order (Random-7/Random-4) Benign Sample #159 Visualizations (Pred: 2.5e-13)

632 Information Systems Frontiers (2023) 25:613–638

1 3

Careful examination can reveal the worst ordering appears to
have small blocks of contiguous data, but with erratic breaks
whereas the best order also has contiguous blocks of data
but are broken up at intermittent intervals. The Salience and
CAM plots are similar by comparison, the major difference
is that GradCAM++ has full influence on the best order
benign sample. By comparison the other maps have similar
areas, just shifts in regions and intensities.

5 Conclusion

There is relevance to proper data ordering when prepar-
ing data for CNN, regardless of the model. Even with a
model that mattered least, DenseNet-121, we still noticed
an improvement of 96.4% toward perfection between the
tested extremes. With every model, there was a handful of
ordering schemes that achieved close to the best perform-
ing score, whereas the worst order was always an outlier.

Notably there were 252 unique ordering schemes. This
leads us to hypothesize that every model has many ordering
schemes that nearly approach the optimal performance, but
the poorly performing ones are rare in comparison.

Ordering performance is model-dependent. What one
model considered a good order on an axis, other models may
not. Usually some performance improvement was seen when
using either correlation or anticorrelation algorithm for an
ordering scheme, but amount relevant was model-dependent.
It was also axis dependent, the shorter axis appreciated hav-
ing the correlation or anticorrelation function as an ordering
scheme, while the longer axis might not.

With malware data, different models behaved differently.
On average Xception produced the best results and had a few
options in order schemes that achieved the second-highest mark
for a model. One of the schemes happens to include regular
correlation on the shorter axis, and all correlation schemes per-
formed better than average on the longer axis. This seems to
indicate that Xception may be easy to tune. DenseNet-121 also

Fig. 19 Xception’s Worst Order (Random-7/Random-4) Infected Sample #165 Visualizations (Pred: 1)

Fig. 20 Xception’s Best Order (Random-3/Random-5) Benign Sample #159 Visualizations (Pred: 0)

633Information Systems Frontiers (2023) 25:613–638

1 3

performed very well with only a slightly lower peak mAP rating
among our options in two-thirds of the training time. Correla-
tion along the longer axis is one of the peak ordering schemes
for DenseNet-121; thus it may also be easy to tune.

ResNet-18 produced the widest range of results, both
the best and worst, followed by MobileNet. On average,
ResNet-18 appears to like the anticorrelated on both axes,
almost opposite behavior than the other models. MobileNet
appears to perform well with any proposed correlation order
schemes for the shorter axis, but performs very poorly on
the longer axis. We suspect that MobileNet’s responsive-
ness to one axis over the other and the visualization of that
responsiveness has more to do with the scaling of the later
convolution layers within the model.

Although Inception-V3 was faster at training than both
Xception and DenseNet-121, its average performance was
outperformed by MobileNet, which produced better results
in half the training time. Inception-V3’s architecture seems

to lend to a more intuitive understanding of the visualiza-
tions produced.

As a result of this study we propose a methodology for
identifying a preferred model and ordering for a novel grids
of nonnatural data:

• Identify an initial, usually structurally defined, ordering
for the grids.

• Test any available model with this ordering for a limited
number of epochs and select several of the best perform-
ing models.

• Use the methodology detailed within this paper to gener-
ate several ordering options from statistics, and include a
dozen random orders for a baseline.

• Test all of the options with the chosen models and select
best performer.

Visualizations provide some insight into what the CNNs
are doing with nonnatural data, but deciphering the plots

Fig. 21 Xception’s Best Order (Random-3/Random-5) Infected Sample #165 Visualizations (Pred: 1)

Fig. 22 MobileNet’s Worst Order (Alphanumeric/Original) Benign Sample #159 Visualizations (Pred: 2e-13)

634 Information Systems Frontiers (2023) 25:613–638

1 3

from these deeper models on the malware data is not as
intuitive as it is when examining visualizations from sequen-
tial models with images. We were not able to identify what

particular data points within the sample made up a malware
feature. In general, Salience and ScoreCAM plots contain
the most distinct and unique plots per experiment scenario.

Fig. 23 MobileNet’s Worst Order (Alphanumeric/Original) Infected Sample #165 Visualizations (Pred: 1)

Fig. 24 MobileNet’s Best Order (Correlated/Random-5) Benign Sample #159 Visualizations (Pred: 7.7e-18)

Fig. 25 MobileNet’s Best Order (Correlated/Random-5) Infected Sample #165 Visualizations (Pred: 1)

635Information Systems Frontiers (2023) 25:613–638

1 3

By contrast GradCAM creates the same plot, an empty rec-
tangle, for more than one-third of the scenarios. GradCAM
and GradCAM++, in one of the best scenarios each, cre-
ate the same empty plot for both the positive and negative
samples. They appear unable to display the distinguishing
features the CNNs are using to make decisions.

ScoreCAM appears the most descriptive. For the best
ordering schemes of every model show the plots between
benign and maleficent are more similar than the ScoreCAM
plots in the worst ordering schemes. This indicates that
ScoreCAM identifies that similar features are used in deci-
sions in better ordering schemes, whereas the worst order-
ing schemes show distinct or divergent features. In general
the visualizations provide some sense to the distinctness the
various CNN models generate features from the different
orderings, but lack in clarity as to which portions of the
original data grid had an influence on those features.

This study raises several questions:

• Do these observations hold for other nonnatural security
data?

• Does anticorrelation observation hold for deeper versions
of Resnet?

• Is it the axis size that makes MobileNet respond so dif-
ferently when comparing rows and columns?

• Can we improve the visualization techniques, perhaps
multiple layers over many samples, to help researchers
understand CNN’s internal workings for nonnatural data?

These questions prompt our future research.

5.1 Future Work

To further our understanding of how order affects CNN per-
formance, we plan on continuing our research as follows:

• Examine the application of our technique to other secu-
rity datasets, particularly the CIC-IDS-2017.

Fig. 26 DenseNet-121’s Worst Order (ABS-Correlated/Random-5) Benign Sample #159 Visualizations (Pred: 2.2e-10)

Fig. 27 DenseNet-121’s Worst Order (ABS-Correlated/Random-5) Infected Sample #165 Visualizations (Pred: 1)

636 Information Systems Frontiers (2023) 25:613–638

1 3

• See if this technique holds for nonsecurity-related data-
sets, particularly in industrial and medical fields.

• Identify whether other statistical relationships could
improve the performance of CNN using data prepara-
tion alone.

• Build new visualization tools that allow merging several
layers from multiple samples into a single package.

Acknowledgments This work is partially supported by the National
Science Foundation grants HRD-1736209 and CNS-1553696.

Declarations

All authors certify that they have no affiliations with or involvement in
any organization or entity with any financial interest or non-financial
interest in the subject matter or materials discussed in this manuscript.
The authors have no financial or proprietary interests in any material
discussed in this article.

References

Abdelsalem, M., Krishnan, R., Huang, Y., & Sandu, R. (2018). Mal-
ware detection in cloud infrastructure using convolutional neu-
ral networks. In IEE 11th International conference on cloud
computing.

Avula, S. B., Badri, S. J., & Reddy P. G. (2020). A novel forest fire
detection system using fuzzy entropy optimized thresholding and
stn-based cnn. In 2020 International Conference on COMmunica-
tion Systems NETworkS (COMSNETS). (pp. 750–755). https:// doi.
org/ 10. 1109/ COMSN ETS48 256. 2020. 90273 47.

Chattopadhay, A., Sarkar, A., Howlader, P., & Balasubramanian, V. N.
(2018). Grad-cam++: Generalized gradient-based visual expla-
nations for deep convolutional networks. In 2018 IEEE Winter
conference on applications of computer vision (WACV). https://
doi. org/ 10. 1109/ wacv. 2018. 00097.

Chollet, F. (2017). Xception: Deep learning with depthwise separable
convolutions.

Deng, L., Hinton, G., & Kingsbury, B. (2013). New types of deep
neural network learning for speech recognition and related appli-
cations: an overview. In 2013 IEEE International conference on

Fig. 28 DenseNet-121’s Best Order (VM-PID/Random-1) Benign Sample #159 Visualizations (Pred: 3.5e-20)

Fig. 29 DenseNet-121’s Best Order (VM-PID/Random-1) Infected Sample #165 Visualizations (Pred: 1)

637Information Systems Frontiers (2023) 25:613–638

https://doi.org/10.1109/COMSNETS48256.2020.9027347
https://doi.org/10.1109/COMSNETS48256.2020.9027347
https://doi.org/10.1109/wacv.2018.00097
https://doi.org/10.1109/wacv.2018.00097

1 3

acoustics, speech and signal processing (pp. 8599–8603). https://
doi. org/ 10. 1109/ ICASSP. 2013. 66393 44.

Elhassouny, A., & Smarandache, F. (2019). Trends in deep convolu-
tional neural networks architectures: a review. In 2019 Interna-
tional conference of computer science and renewable energies
(ICCSRE) (pp. 1–8). https:// doi. org/ 10. 1109/ ICCSRE. 2019. 88077
41.

Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing
higher-layer features of a deep network. University of Montreal,
1341(3), 1.

Golinko, E., Sonderman, T., & Zhu, X. (2018). Learning convolutional
neural networks from ordered features of generic data. In 2018
17th IEEE international conference on machine learning and
applications (ICMLA) (pp. 897–900). https:// doi. org/ 10. 1109/
ICMLA. 2018. 00145

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning
for image recognition. arXiv:1512. 03385.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning
for image recognition.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classifi-
cation. In The IEEE International conference on computer vision
(ICCV).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Wey-
and, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient
convolutional neural networks for mobile vision applications.

Hu, Y., Zhang, D., Cao, G., & Pan, Q. (2019). Network data analysis
and anomaly detection using cnn technique for industrial control
systems security. In 2019 IEEE International conference on sys-
tems, man and cybernetics (SMC). (pp. 593–597). https:// doi. org/
10. 1109/ SMC. 2019. 891389

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2018).
Densely connected convolutional networks.

Huang, G., Liu, Z., & Weinberger, K. Q. (2016). Densely connected
convolutional networks. arXiv:1608. 06993.

Jiang, W., & Bruton, L. (1999). Lossless color image compression
using chromatic correlation. In Proceedings DCC’99 data com-
pression conference (Cat. No. PR00096) (pp. 533–).

Kimmel, J. C., Mcdole, A. D., Abdelsalam, M., Gupta, M., & Sandhu,
R. (2021). Recurrent neural networks based online behavioural
malware detection techniques for cloud infrastructure. IEEE
Access, 9, 68066–68080. https:// doi. org/ 10. 1109/ ACCESS. 2021.
30774 98.

Klepetko, R., & Krishnan, R. (2019). Analyzing cnn model perfor-
mance sensitivity to the ordering of non-natural data. In 2019
4th International conference on computing, communications and
security (ICCCS) (pp. 1–8). https:// doi. org/ 10. 1109/ CCCS. 2019.
88880 41.

Lee, J. Y., & Dernoncourt, F. (2016). Sequential short-text clas-
sification with recurrent and convolutional neural networks.
arXiv:1603. 03827.

Lihao, W., & Yanni, D. (2018). A fault diagnosis method of tread pro-
duction line based on convolutional neural network. In 2018 IEEE
9th International conference on software engineering and service
science (ICSESS) (pp. 987–990). https:// doi. org/ 10. 1109/ ICSESS.
2018. 86638 24.

Liu, C., Dai, L., Cui, W., & Lin, T. (2019). A byte-level cnn method
to detect dns tunnels. In 2019 IEEE 38th International perfor-
mance computing and communications conference (IPCCC) (pp.
1–8). https:// doi. org/ 10. 1109/ IPCCC 47392. 2019. 89587 14.

Liu, G., & Zhao, F. (2007). An efficient compression algorithm for
hyperspectral images based on correlation coefficients adaptive
three dimensional wavelet zerotree coding. In 2007 IEEE Interna-
tional conference on image processing, (Vol. 2 pp. II–341–II–344)
https:// doi. org/ 10. 1109/ ICIP. 2007. 43791 62.

McDole, A., Abdelsalam, M., Gupta, M., & Mittal, S. (2020). Analyz-
ing cnn based behavioural malware detection techniques on cloud
iaas. In Q Zhang, Y Wang, & L-J Zhang (Eds.) Cloud Comput-
ing – CLOUD 2020 (pp. 64–79). Cham: Springer International
Publishing.

Milton-Barker, A. (2019). Inception v3 deep convolutional architecture
for classifying acute. https:// softw are. intel. com/ conte nt/ www/ us/
en/ devel op/ artic les/ incep tion- v3- deep- convo lutio nal- archi tectu re-
for- class ifying- acute- myelo idlym phobl astic. html.

Mobadersany, P., Yousefi, S., Amgad, M., Gutman, D. A., Barnholtz-
Sloan, J. S., Velázquez Vega, J. E., Brat, D. J., & Cooper, L. A. D.
(2018). Predicting cancer outcomes from histology and genom-
ics using convolutional networks. Proceedings of the National
Academy of Sciences, 115(13), E2970–E2979. https:// doi. org/ 10.
1073/ pnas. 17171 39115, https:// www. pnas. org/ conte nt/ 115/ 13/
E2970. full. pdf.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ”why should i trust
you?” explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 1135–1144).

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D.,
& Batra, D. (2019). Grad-cam: Visual explanations from deep
networks via gradient-based localization. International Journal
of Computer Vision, 128(2), 336–359. https:// doi. org/ 10. 1007/
s11263- 019- 01228-7.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside con-
volutional networks: Visualising image classification models and
saliency maps.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going deeper
with convolutions.

van Wyk, F., Wang, Y., Khojandi, A., & Masoud, N. (2020). Real-time
sensor anomaly detection and identification in automated vehicles.
IEEE Transactions on Intelligent Transportation Systems, 21(3),
1264–1276. https:// doi. org/ 10. 1109/ TITS. 2019. 29060 38.

Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel,
P., & Hu, X. (2020). Score-cam: Score-weighted visual explana-
tions for convolutional neural networks.

Wang, Q., & Shen, Y. (2005). A jpeg2000 and nonlinear correlation
measurement based method to enhance hyperspectral image com-
pression. In 2005 IEEE Instrumentationand measurement technol-
ogy conference proceedings, (Vol. 3 pp. 2009–2011). https:// doi.
org/ 10. 1109/ IMTC. 2005. 16045 24.

Zhang, Y., Chen, X., Jin, L., Wang, X., & Guo, D. (2019). Network
intrusion detection: based on deep hierarchical network and origi-
nal flow data. IEEE Access, 7, 37004–37016. https:// doi. org/ 10.
1109/ ACCESS. 2019. 29050 41.

Zhao, X., Gao, L., Chen, Z., Zhang, B., Liao, W., & Yang, X. (2019).
An entropy and mrf model-based cnn for large-scale landsat image
classification. IEEE Geoscience and Remote Sensing Letters,
16(7), 1145–1149. https:// doi. org/ 10. 1109/ LGRS. 2019. 28909 96.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2015).
Learning deep features for discriminative localization.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

638 Information Systems Frontiers (2023) 25:613–638

https://doi.org/10.1109/ICASSP.2013.6639344
https://doi.org/10.1109/ICASSP.2013.6639344
https://doi.org/10.1109/ICCSRE.2019.8807741
https://doi.org/10.1109/ICCSRE.2019.8807741
https://doi.org/10.1109/ICMLA.2018.00145
https://doi.org/10.1109/ICMLA.2018.00145
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/SMC.2019.891389
https://doi.org/10.1109/SMC.2019.891389
http://arxiv.org/abs/1608.06993
https://doi.org/10.1109/ACCESS.2021.3077498
https://doi.org/10.1109/ACCESS.2021.3077498
https://doi.org/10.1109/CCCS.2019.8888041
https://doi.org/10.1109/CCCS.2019.8888041
http://arxiv.org/abs/1603.03827
https://doi.org/10.1109/ICSESS.2018.8663824
https://doi.org/10.1109/ICSESS.2018.8663824
https://doi.org/10.1109/IPCCC47392.2019.8958714
https://doi.org/10.1109/ICIP.2007.4379162
https://software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://doi.org/10.1073/pnas.1717139115
https://doi.org/10.1073/pnas.1717139115
https://www.pnas.org/content/115/13/E2970.full.pdf
https://www.pnas.org/content/115/13/E2970.full.pdf
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1109/TITS.2019.2906038
https://doi.org/10.1109/IMTC.2005.1604524
https://doi.org/10.1109/IMTC.2005.1604524
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1109/LGRS.2019.2890996

	Visualizing Convolutional Neural Network Models’ Sensitivity to Nonnatural Data Order
	Abstract
	1 Introduction
	2 Related Work
	2.1 CNN and Nonnatural Data
	2.2 Convolutional Neural Networks and Security
	2.3 CNN Models
	2.4 Visualizing Convolutional Neural Networks

	3 Methodology
	3.1 Dataset - Metric by Process Grids
	3.2 Row and Column Ordering Algorithms

	4 Evaluation
	4.1 Test Beds
	4.2 CNN Models - Chosen Through Experimentation
	4.3 Result Plots
	4.4 Model Comparison
	4.5 Visualizations

	5 Conclusion
	5.1 Future Work

	Acknowledgments
	References

